Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399816

RESUMO

Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.

2.
Biochem Biophys Res Commun ; 699: 149566, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290176

RESUMO

There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia , Infecções Estafilocócicas/microbiologia , Ácidos Graxos , Testes de Sensibilidade Microbiana
3.
Microorganisms ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363708

RESUMO

Staphylococcus aureus is one of the most important pathogens in humans as well as in livestock. Particularly, bovine mastitis caused by S. aureus is a serious issue in dairy farms due to disease recurrence. Here, cases of S. aureus-mediated intramammary infection occurring in the Miyagi Prefecture in Japan were monitored from May 2015 to August 2019; a total of 59 strains (49 from bovine milk and 10 from bulk milk) were obtained from 15 dairy farms and analyzed via sequence-based typing methods and antibiotic susceptibility tests. Two pairs of isolates were determined as recurrence cases from the same cows in distinct farms. The sequence type (ST), spa type, and coa type of each pair were the same: one pair showed ST705, t529, and VIb and the other showed ST352, t267, and VIc. In addition, the possession of toxin genes analyzed of each pair was exactly the same. Furthermore, seven oxacillin-sensitive clonal complex 398 isolates were obtained from a single farm. This is the first confirmed case of a Methicillin-Sensitive SA (MSSA) ST398 strain isolated from mastitis-containing cows in Japan. Our findings suggest that nationwide surveillance of the distribution of ST398 strains in dairy farms is important for managing human and animal health.

4.
World J Microbiol Biotechnol ; 38(3): 54, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35149902

RESUMO

Mannosylerythritol lipid-B (MEL-B), which comprises ester-bonded hydrophilic ME and hydrophobic fatty acids, is a bio-surfactant with various unique properties, including antimicrobial activity against most gram-positive bacteria. The gram-positive Staphylococcus aureus is a causative pathogen of dairy cattle mastitis, which results in considerable economic loss in the dairy industry. Here, we demonstrate the efficacy of MEL-B as a disinfectant against bovine-derived S. aureus and elucidate a mechanism of action of MEL-B in the inhibition of bacterial growth. The growth of bovine mastitis causative S. aureus BM1006 was inhibited when cultured with MEL-B above 10 ppm. The activity of MEL-B required fatty acids (i.e., caprylic and myristoleic acids) as ME, the component of MEL-B lacking fatty acids, did not inhibit the growth of S. aureus even at high concentrations. Importantly, ME-bound fatty acids effectively inhibited the growth of S. aureus when compared with free fatty acids. Specifically, the concentrations of ME-bound fatty acids and free caprylic and myristoleic acids required to inhibit the growth of S. aureus were 10, 1442, and 226 ppm, respectively. The involvement of ME in the antimicrobial activity of MEL-B was confirmed by digestion of MEL-B with alkali, which dissociated ME and fatty acids. These results indicated that a mechanism of action of MEL-B in inhibiting the growth of S. aureus could be explained by the effective transporting of antimicrobial fatty acids to the bacterial surface via hydrophilic ME.


Assuntos
Anti-Infecciosos , Mastite Bovina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Bovinos , Feminino , Glicolipídeos , Mastite Bovina/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
5.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668720

RESUMO

In Escherichia coli, L-alanine is synthesized by three isozymes: YfbQ, YfdZ, and AvtA. When an E. coli L-alanine auxotrophic isogenic mutant lacking the three isozymes was grown on L-alanine-deficient minimal agar medium, L-alanine prototrophic mutants emerged considerably more frequently than by spontaneous mutation; the emergence frequency increased over time, and, in an L-alanine-supplemented minimal medium, correlated inversely with L-alanine concentration, indicating that the mutants were derived through stress-induced mutagenesis. Whole-genome analysis of 40 independent L-alanine prototrophic mutants identified 16 and 18 clones harboring point mutation(s) in pyruvate dehydrogenase complex and phosphotransacetylase-acetate kinase pathway, which respectively produce acetyl coenzyme A and acetate from pyruvate. When two point mutations identified in L-alanine prototrophic mutants, in pta (D656A) and aceE (G147D), were individually introduced into the original L-alanine auxotroph, the isogenic mutants exhibited almost identical growth recovery as the respective cognate mutants. Each original- and isogenic-clone pair carrying the pta or aceE mutation showed extremely low phosphotransacetylase or pyruvate dehydrogenase activity, respectively. Lastly, extracellularly-added pyruvate, which dose-dependently supported L-alanine auxotroph growth, relieved the L-alanine starvation stress, preventing the emergence of L-alanine prototrophic mutants. Thus, L-alanine starvation-provoked stress-induced mutagenesis in the L-alanine auxotroph could lead to intracellular pyruvate increase, which eventually induces L-alanine prototrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...